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Abstract. Granular metamaterials are a promising choice for the real-
ization of mechanical computing devices. As preliminary evidence of this,
we demonstrate here how to embed Boolean logic gates (AND and XOR)
into a granular metamaterial by evolving where particular grains are
placed in the material. Our results confirm the existence of gradients
of increasing “AND-ness” and “XOR-ness” within the space of possible
materials that can be followed by evolutionary search. We measure the
computational functionality of a material by probing how it transforms
bits encoded as vibrations with zero or non-zero amplitude. We com-
pared the evolution of materials built from mass-contrasting particles
and materials built from stiffness-contrasting particles, and found that
the latter were more evolvable. We believe this work may pave the way
toward evolutionary design of increasingly sophisticated, programmable,
and computationally dense metamaterials with certain advantages over
more traditional computational substrates.

Keywords: Granular metamaterials · Mechanical computing · Inverse
design problem

1 Introduction

The concept of mechanical computing can be traced back to the second cen-
tury BC when the earliest known analogue computer, the Antikythera mecha-
nism, was invented [4]. Since then many other mechanical devices were invented
for applications other than astronomical calculations such as basic mathemati-
cal operations [18], solving arbitrary equations [5], and even differentiation and
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integration [21]. With the invention of operational amplifiers in the early twen-
tieth century, electronic analog computers became feasible. Soon after, digital
computers emerged and rapidly became the dominant form for computation
[9]. Although they impose a more abstract form of system representation, digi-
tal computers rapidly outpaced their mechanical counterparts. Moreover, higher
precision and the capacity for miniaturization helped make the digital com-
puting paradigm more desirable. But, recently, rapid advances in the chemical,
biological and materials sciences have opened new opportunities for embedding
computation directly into physical substrates [20].

Metamaterials are one such promising class of substrate that has surfaced
in recent years. Metamaterials are engineered composite materials that exhibit
properties different from their constituent materials, and from material prop-
erties observed in nature [7]. Granular metamaterials (GMMs) are a specific
class of metamaterials consisting of discrete particles. GMMs exhibit increased
plasticity compared to continuous metamaterials because they can be dynami-
cally programmed by reconfiguring the material’s physical structure or changing
particles’ properties using external stimuli [19]. In this paper, we investigate
the potential of granular metamaterials as a physical substrate for mechanical
computation.

Starting with logic gates as the basic computational blocks upon which more
complex units can be built, we focus our work on evolving GMMs that act as
acoustic logic gates: vibrations with near-zero and non-zero amplitudes arriving
at and leaving the material are treated as incoming and outgoing bits. There are
several advantages for this type of computation compared to the conventional
approach of designing logic gates using electrical transistors. First, by moving to
a mechanical substrate, we can avoid analogue to digital conversion, also thereby
bypassing all of the limitations of abstract representations and discretizations
necessary for a digital computing system [21]. Second, outsourcing computation
to the physical substrate provides opportunities for conflating computational,
mechanical, energetic, sensing and actuation properties into the same material.
This could lead to robots built from continua of materials rather than modular
components. This in turn could allow these machines to better exploit the nat-
ural dynamics of the materials, leading to better energy efficiency and higher
robustness and stability. Finally, our approach affords a bottom-up design view
point for computer architecture where the exact form of computation is not pre-
determined [11] and useful, non-intuitive exploitations of the material itself can
be found by evolutionary search [16].

Some work on embedding mechanical computation into materials has been
conducted. In [15], a universal logic gate is implemented as a nonlinear mass-
spring-damper model. In [13] a soft bistable building block is designed and used
in the implementation of soft mechanical diodes and logic gates. [6] utilizes
a bistable spring embedded in a unit cell to implement simple logic gates. In
[17] connected origami units are used to program the behavior of a mechanical
bit and thus produce logic gates. [8] and [1] present examples of acoustic gate
design in a 1D chain of elastic particles. Despite these advances, in none of the
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aforementioned works is the material automatically optimized for the desired
computational function. Instead, the building blocks are hand-designed based on
human intuition. In contrast, we here propose using evolutionary algorithms for
automatically optimizing materials to exhibit desired computation. Moreover,
the abovementioned works involved continuous metamaterials or 1D particle
chains, while we here investigate the computational potential of 2D granular
metamaterials. This type of material can exhibit different responses to different
environmental stimuli by reconfiguring their physical structure and changing
the material properties of individual particles. Thus, we anticipate a greater
potential for extending our work to more complex computational operations.

Granular metamaterials have many parameters that affect the response of the
system. For example, the position, size, shape, stiffness and mass of each particle
can affect the eigenfrequencies of the system and consequently the propagation
of acoustic waves through the material. With so many design parameters, decid-
ing on the optimal micro-structure to achieve a desired macro-behavior (i.e. a
logic gate) is a non-trivial optimization problem. For this reason, evolutionary
algorithms have already proven useful for designing metamaterials that exhibit
mechanical properties [10,12] rather than the computational properties we study
here. In this paper, we apply evolutionary algorithms to the design of 2D gran-
ular metamaterials to act as acoustic logic gates, where the input and output
signals are acoustic waves. The granular assembly is designed such that it passes
or filters the propagation of certain waves and thus acts as a Boolean logic gate.

The remainder of the paper is organized as follows: first, we formally define
the problem and introduce the simulator used for optimization. Then, simulation
results are presented for two different cases: designing an AND gate and designing
an XOR gate. Finally, the results are discussed and the paper is concluded with
some future possible directions of work.

2 Problem Statement

Our material is comprised of a two dimensional assembly of two types of circular
particles placed on a hexagonal lattice. As mentioned in the introduction, the
goal is to reconfigure this granular material to act as a logic gate where the
inputs and the output receive and emit acoustic waves respectively. The setup is
shown in Fig. 1. We choose two particles on one side of the material to serve as
the input ports and one particle on the other side to serve as the output port.
Each input particle i receives a sinusoidal wave with amplitude Ai and frequency
ω applied in the x direction (the particle is vibrated left and right). When this
signal is applied to a particle, it causes a displacement from its initial position
x0
i .

In order to represent a logic gate in this substrate, a representation for the
bits must be chosen. One option is to use the amplitude of the displacement
signal (xi(t)) as the bit abstraction. In this case, applying a sinusoidal wave
with amplitude zero (Ai = 0) to an input port denotes the presentation of a
zero at that port. We fixed the non-zero amplitude to 1 × 10−2, which is 10%
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Fig. 1. Problem formulation: a logic gate with two inputs (green and blue) and one
output (red) embedded in a 2D granular assembly composed of heavy (dark blue) and
light (light blue) particles. A1 and A2 denote the amplitudes of oscillations applied
in the x direction to the input ports (D = particle diameter). ω denotes the input
frequency. The truth table indicates how ‘bits‘ are supplied to the input ports, and
the signal obtained at the output port that will be used to determine how much of a
desired logical function the material encodes. (Color figure online)

of the diameter of a particle. This is at present an arbitrary design choice. The
frequency of the applied signal (ω) is also fixed to 7, chosen based on the fre-
quency spectrum of a typical random configuration of light and heavy particles,
which will be discussed in the next section. The truth table in Fig. 1 shows our
bit representation. The output signal Oij(i, j ∈ 0, 1) denotes the amplitude of
the displacement of the particle at the output port. The three particles chosen
to represent the three ports is also currently an arbitrary design choice.

Using zero and non-zero amplitudes directly to interpret bits arriving at the
output port however is problematic: excitation of both input ports biases the
system to produce larger amplitudes at the output port compared to excitation
of just one input port, biasing any material configuration toward linear functions.
Thus we instead use low and high gain at the output port to represent bits. In
each of the four input cases, the gain of the system is defined as the amplitude
of the fast Fourier transform (f̂) at the driving frequency (ω) at the output
divided by the sum of the amplitudes of the fast Fourier transform at the driving
frequency (ω) in the inputs:

Gij =
f̂(Oij)

f̂(ini) + f̂(inj)
i, j ∈ 0, 1 (1)

In our experiments, for each material we measure the gain for each of the four
input cases. In order for the material to act as a logic gate, the relative mag-
nitude of the gain in each case must be consistent with desired functionality
of the gate. For example, for an AND gate when both input ports are driven
with a sinusoidal wave, we expect to see a high amplitude of oscillation at the
output and therefore we expect a high gain (G11). But in the other three cases
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(00, 01, 10) we expect a low gain. Based on this, we can measure the similarity
of any material’s functionality to a desired logic gate by taking the distance
between the four expected output bits and the four gain values.

3 Simulation Setup

In this section, we first present some details of our 2D granular metamaterial
simulator. Then, we provide details of the evolutionary algorithm used for opti-
mization.

3.1 2D Granular Simulator

We model a simplified granular metamaterial inspired by [19]. The system is 2D
and composed of frictionless circular disks with fixed and equal diameters. The
particles can be assigned differing masses and/or stiffnesses. The particles are
placed on a 5 by 6 hexagonal lattice, resulting in 30 particles available for opti-
mization. The system has a periodic boundary condition in the x direction and
a fixed boundary condition in the y direction. There is no gravity in the system
and the only forces acting on the particles are the result of a purely repulsive lin-
ear spring potential between the disks which can be formalized as Lennard-Jones
potential. This system is simulated using Discrete Element Method (DEM). At
each simulation time step, repulsive forces are calculated for those particles in
contact with other particles, based on their distances to particles with which
they are in contact. Then the accelerations, velocities and positions of each par-
ticle are updated using Verlet integration. Before probing the bulk properties
of the material, a post-processing step is taken to ensure that the system is
at equilibrium: the sum of the total forces between particles is near zero. This
ensures that the particle packing is statistically stable. This is done by calculat-
ing the total force acting on each particle and updating their positions using the
steepest-descent method to reduce total force. In the experiments where we have
particles with different stiffnesses, we need to find the stable initial positions for
each configuration separately. This will increase the total simulation time of our
optimizations. In those cases Fast Inertial Relaxation Engine (FIRE) was used
in order to reduce computational effort.

As computational metamaterials must selectively amplify or extinguish cer-
tain input waves to perform logical functions in the frequency domain, it is useful
to take a closer look at their frequency spectrum. One useful property of granular
metamaterials is the existence of band gaps in their vibrational density of states
[2]: a contiguous range of input frequencies extinguished by the material. To
locate a material’s band gap, its mass-weighted dynamical matrix is calculated
using the Hessian of the total potential energy. The eigenvalues of this matrix
are the eigenfrequencies of the system and the eigenvectors are the modes. If
the eigenfrequency spectrum is plotted by sorting the frequencies in increasing
order, gaps in the spectrum become visible. The widest gap is denoted as the
band gap (An example is shown in Fig. 2c). If the granular system is excited
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at a frequency within the band gap, the signal will not propagate through the
material. On the other hand if the signal is outside the band gap, the system will
be excited at one of its resonant frequencies and the output will be magnified.
For this reason, we will choose input frequencies near the low and high cut-off
frequencies of a typical material’s band gap to facilitate the evolution of com-
putational metamaterials capable of selectively amplifying or suppressing input
waves, as explained in the next section.

3.2 Optimization Method

For optimization we use Age-Fitness Pareto Optimization (AFPO) [14]. AFPO
is a multi-objective, multi-deme evolutionary algorithm that periodically injects
new random individuals into the population and temporarily reduces selec-
tion pressure on their resulting lineages, thereby achieving diversity mainte-
nance without requiring additional hyperparameter tuning. In all experiments
we employed a direct encoding scheme for the genome: length-30 binary vectors
indicated which particles were light or heavy in the mass-contrasting experi-
ments, and which particles were soft or stiff in the stiffness-contrasting experi-
ments. Two way tournament selection was employed to select which individuals
produced offspring. Offspring were mutated by flipping each bit with probability
0.05. Crossover was not employed because there is no evidence that combining
parts of two materials preserves any of their respective bulk behaviors. In all the
experiments (unless mentioned otherwise) a population size of 50 was used, and
each evolutionary trial was conducted for 200 generations. Three replicates were
performed for each experiment. Each replicate began with a different random
initial population. The fitness function for each experiment will be introduced
in the subsequent sections.

4 Results and Discussion

In the first experiment, the goal was to evolve a particle configuration that maxi-
mizes the band gap. This evolved band gap was used to choose input frequencies
for the subsequent experiments in which AND and XOR gates are evolutionarily
embedded into two different metamaterials: those with mass-differing particles
and those with stiffness-differing particles. Source code for all of the experiments
is available in our GitHub repository.

4.1 Evolution of an Acoustic Band Gap

Vibrational frequency band gaps can be used to shield materials from vibra-
tions and other perturbations. As mentioned before, vibrations with frequencies
within the band gap do not propagate into the material. To block vibrations
over a range of frequencies, wider band gaps are necessary. We can also tune
the location of the central region of the band gap to block perturbations over
different frequency ranges. A granular metamaterial’s band gap can be altered

https://github.com/AtoosaParsa/AcousticLogicGates
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by changing the number of particles embedded within it, as well as the particles’
masses, positions, stiffnesses and shapes. Here, we focus on particle arrange-
ments and define the optimization problem as finding the placement of a fixed
number of heavy and light particles on a hexagonal lattice to maximize the band
gap. In this section, we assume that we have 9 light and 21 heavy particles (30
particles in total), an arbitrary design chose at present. The genome encodes the
positions of the light particles on the lattice. The result of three evolutionary
trials is shown in Fig. 2.

Fig. 2. Evolving the placement of 9 light and 21 heavy particles on a hexagonal lattice
to maximize the acoustic band gap. (a): The fitness curve (solid blue) reports evolu-
tionary progress as the fitness of the best individual from each generation averaged
over 3 runs. The three most fit solutions from three independent runs are shown on the
right. (b): The histogram shows the distribution of 10000 randomly generated samples.
(c): The plot shows the frequency spectrum of the best solutions along with the width,
start and end points of the band gap on the left. (Color figure online)

This problem admits C9(30) =
(
30
9

)
= 143071150 possible materials. To judge

the quality of optimization, we generated 10000 random configurations and cal-
culated the band gap for each of them (Fig. 2b). The mean value of this distri-
bution lies near 4. At the end of 500 generations (with a population size of 30),
AFPO was able to find configurations with a band gap of Δω = 7.94. It’s worth
mentioning that in this section, we chose to increase the number of generations,
because probing the evolutionary progress showed a continued improvement.
Interestingly, the optimal designs with the highest band gaps are symmetric
and show an ordered arrangement, which is consistent with our knowledge from
materials sciences. Band gaps are known to occur in crystalline mixtures with
regular patterns [3]. Moreover, because of the periodic boundary condition in
the x direction, the three best solutions are the same configuration, just shifted
different distances horizontally.



100 A. Parsa et al.

4.2 Evolving an AND Gate

In this experiment, particle configurations are evolved on a hexagonal lattice
to act as much like an acoustic AND gate as possible. As we mentioned in the
simulation section, we can measure the gain of the system (the relative amplitude
of output oscillations to the input oscillations) for each of the four possible input
cases (00, 01, 10, 11). G00 is trivial: if the input is 00—no displacement is applied
to either of the input particles—the output particle will yield no displacement
either. For the other three cases, a significant gain should only be observed when
both inputs are activated (high G11). To achieve this, we defined the following
fitness function:

f“AND-ness” =
G11

(G10 + G01)/2
(2)

The next two sections present the results of evolving mass-varying and stiffness-
varying granular metamaterials with this fitness function.

4.2.1 Evolving an AND Gate in a Mass-Varying Material
Figure 3 reports the results of evolving the placement of light and heavy particles,
with a mass ratio of 10, using Eq. 2 as the fitness function.

The histogram in panel (a) shows the distribution of 5000 random config-
urations sampled from 230 = 1.07 × 109 total possible configurations based on
the measure of “AND-ness” (Eq. 2). The mean AND-ness for a random config-
uration is 0.715. The best configuration found by random search has a fitness of
3.52. Optimization was able to find a configuration with a fitness of 8.21 after
200 generations. Figure 5 reports the fittest designs from the three independent
evolutionary trials. We notice that these configurations are not intuitive or sym-
metric, which makes it much harder to obtain from scratch in material design.
Figure 4 illustrates how one of these best designs approximates the behavior of
an AND gate: there is significant gain in the signal at the output port, at the
driving frequency, only when both input ports are excited at that frequency.

Fig. 3. Designing an AND gate in a mass-contrasting assembly of particles. (a): The
histogram shows the distribution of the AND-ness in 5000 random configurations. (b):
The plot shows the progress of optimization during 200 generations.
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Fig. 4. (a): One of the best designs for an AND gate with mass-contrasting particles.
(b): its band gap characteristics. (c): amplitudes at the driving frequency (7), and all
other frequencies, at the input and output ports, for three of the four input cases, in
the frequency domain. (d): the same signals, shown in the time domain. The orange
rectangle in each of the plots in panel (c) highlights the behavior of the output port.
The 00 → 0 case is not shown as it is trivial and always holds, regardless of material,
because no energy can enter the material except through the input ports. (Color figure
online)

Fig. 5. The fittest AND gate designs from the three evolutionary trials, using mass-
contrasting particles. Their frequency spectra, band gap features, and fitness values
(Eq. 2) are also shown.

4.2.2 Evolving an AND Gate in a Stiffness-Varying Material
To investigate how different materials facilitate or obstruct the ability to evolve
computational abilities into them, we evolved materials composed of particles
with the same mass but differing stiffnesses: AFPO places stiff and soft particles,
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with a stiffness ratio of 10, and evolves materials to maximize “AND-ness” using
Eq. 2. Figure 6 reports the result of optimization. As seen in the histogram,
mean AND-ness for configurations found by random search is 0.760. The best
configuration found by random search has a fitness of 7.88. AFPO performed
significantly better than random search: in one of the three trials, it found a
configuration with a fitness of 10.61 after 200 generations. Figure 7 shows how
this configurations acts as an AND gate. Figure 8 shows the three best designs
from the three trials.

Fig. 6. Designing an AND gate in a stiffness-contrasting assembly of particles. (a):
The histogram shows the distribution of “AND-ness” in 5000 random configurations,
as well as the best and worst material found. Light and dark green colors indicate soft
and stiff particles, respectively. (b): The plot shows the progress of optimization during
200 generations. (Color figure online)

4.3 Evolving an XOR Gate

An AND gate is not that far from a linear function, as more energy put into the
system at the two input port should produce more energy at the output port,
at least when both inputs are activated. Thus we next attempted to evolve an
XOR gate into materials, as it is a more non-linear function and thus would
intuitively seem to require more design effort. In an XOR gate, we expect to see
a significant displacement at the output if only one of the input ports is being
driven by a sinusoidal displacement (the 01 and 10 input cases). In order to
achieve this, we defined an “XOR-ness” fitness function as follows:

f“XOR-ness” =
(G10 + G01)/2

G11
(3)

such that increasing values denote materials that act increasingly like an XOR
gate. As before, we investigated evolving materials with mass-contrasting par-
ticles and materials with stiffness-contrasting particles against this fitness func-
tion.
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Fig. 7. One of the best designs for an AND gate with stiffness-contrasting particles. (a)
and (b) show the configuration and its band gap respectively. (c) shows the response
of the material at the driving frequency, and the other frequencies, for three of the four
input cases. (d) shows the displacements of the input ports and the output port over
time.

Fig. 8. The most “AND-like” stiffness-varying materials from the three evolutionary
trials. The band gap for each configuration is shown below each of them.

4.3.1 Evolving an XOR Gate in a Mass-Varying Material
We performed three evolutionary trials that optimize the placement of heavy and
light particles (mass ratio = 10) into materials such that they maximize “XOR-
ness” (Eq. 3). Figure 9 shows the result of optimization. There we see that mean
XOR-ness in materials found by random search is 1.775, while the best material
had an XOR-ness of 26.59. Evolutionary search performed significantly better: it
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Fig. 9. Designing an XOR gate in a mass-contrasting assembly of particles. (a): The
histogram shows the distribution of XOR-ness across 5000 materials found via random
search. (b): Progress of evolutionary optimization.

Fig. 10. One of the best designs for an XOR gate found for materials with mass-
contrasting particles. (a) and (b) report the evolved configuration and its band gap
features. (c) reports the material’s response at the driving frequency (7) and all other
frequencies. (d) shows material’s behavior over time when presented with three of the
four input cases.

found a material with an XOR-ness of 91.08. Figure 11 shows that material and
the best materials found in the other two trials. Figure 10 reports the detailed
behavior of one of these materials.
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Fig. 11. The most XOR-like mass-varying materials found by each of the three evo-
lutionary trials. The frequency spectrum of each configuration along with its fitness
values is shown below each one.

Fig. 12. Evolving XOR behavior into a stiffness-contrasting assembly of particles. (a):
The distribution of XOR-ness (as defined in Eq. 3) in 5000 materials found by random
search. (b): Average performance of the three evolutionary trials.

4.3.2 Evolving an XOR Gate in a Stiffness-Varying Material
As with the AND gate experiments, we investigated whether different kinds of
materials facilitate or obstruct evolving XOR gates into them. To do so, we
performed another three evolutionary trials using the XOR-ness fitness function
(Eq. 3) on materials in which 30 soft or stiff particles could be placed into the
material. Figure 12 reports the relative performance of random and evolutionary
search. Although the mean fitness of materials found by random search is only
1.622, the best material achieved an XOR-ness of 60.24. Evolutionary search,
on the other hand, again performed significantly better than random search: it
found a particle assembly with a fitness of 94.08. Figure 13 shows one of the
three best solutions from evolutionary optimization. Figure 13c shows that this
material does indeed act as an XOR gate: the amplitude of oscillations at the
output is significantly higher when only one of the input ports is activated.
Figure 14 shows the best solutions from the three trials.
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Fig. 13. One of the most XOR-like evolved materials, composed from stiffness-
contrasting particles. (a) and (b) report the configuration and its band gap features.
(c) reports how the material responds at the driving frequency (7) and all other fre-
quencies. (d) shows how the three ports displace, over time, during three of the four
input cases.

Fig. 14. The most XOR-like stiffness-varying materials, produced by each of the three
evolutionary trials. The frequency spectrum of each configuration along with its fitness
is shown below each one.

5 Conclusion and Future Work

Here we demonstrated the potential for granular metamaterials to act as physical
substrates for computation expressed as amplification or extinction of acoustic
waves. The significant performance advantage obtained by evolutionary search
over random search, for two different logical operations and two different kinds
of granular materials, indicates that such materials can embed computation, but
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finding ones that do is non-trivial, even for simple Boolean operations. More-
over, as the computation becomes more challenging, the efficacy of evolutionary
over random search increases: evolutionary search is 10 times better at finding
materials that act like AND gates compared to random search (Figs. 3, 6); it is
100 times better at finding materials that act like XOR gates (Figs. 9, 12).

Moreover, we noticed that evolutionary search can embed computation into
some materials better than others. For example, the most AND-like mass-varying
material shows a much weaker ‘1‘ signal at its output port (Fig. 4c) compared
to the ‘1’ output by the most AND-like stiffness varying material (Fig. 7c). Sim-
ilarly, the ‘1’s output by the most XOR-like mass-varying material (Fig. 10c)
are weaker than the ‘1’s output by the most XOR-like stiffness-varying material
(Fig. 13c).

The non-intuitive nature of embedding computation into granular metamate-
rial is also evidenced by the lack of obvious common patterns across the evolved
materials that best embody the logic gates: each has unique ratios of light/heavy
or soft/stiff particles, geometric patterns, and there is no obvious regularity or
symmetry (Figs. 5, 8, 11 and 14). This emphasizes the utility of automated design
in this domain. Designing a configuration of particles to behave as a logic gate is
a rather difficult task to accomplish without the aid of computer optimization.

Future work is planned in which the design space is expanded by expand-
ing lattice resolution, and subjugating particle shape and input/output port
placement to evolutionary optimization as well. Analytic efforts will focus on
attempting to understand how vibrating particles encode computation by train-
ing machine learning methods to seek common patterns across successful designs
not visible to human inspection. We will also investigate whether successful
designs compute sub-functions in different regions of the material and then
combine them downstream, or do not need recourse to such divide-and-conquer
strategies.

We will also explore verifying our simulation results in physical hardware. It
is possible that, given the discrete nature of granular metamaterials compared to
continuous media, crossing the reality gap may prove easier for former compared
with the latter. Also, because different designs are currently just different place-
ments of two types of particles on a predefined grid, we expect the fabrication
process to be cheaper, faster and easier as well.

Granular metamaterials, unlike continuous media, afford the possibility of
serving not just as computational substrates but as reconfigurable computa-
tional substrates: it may be possible to build physical GMMs from particles that
dynamically change stiffness in response to external stimuli such as temperature.
This may allow for the packing of more computational ability within the same
dynamic material. Creating increasingly computationally dense GMMs will also
be investigated by providing waves with increasingly complex and diverse shape,
at more input ports, with summed oscillatory components that drive different
computations in the same material at the same time. This may in time show
that granular metamaterials, or other emerging exotic materials, may be com-
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petitive with or possibly superior to current electronic devices as vehicles for
computation.
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